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Abstract
Generating accurate data for stock assessments is resource-demanding, necessitating periodic evaluation of survey sampling

designs and potential impacts on stock assessments. We developed a framework for bootstrapped resampling of survey age
data and calculation of input sample sizes as a function of among-bootstrap variance in age compositions. Data from this
bootstrap estimator were then used to evaluate the influence of alternative sampling rates and methods on uncertainty in
estimates of the overfishing limit (OFL) calculated using stock assessment models. For dusky rockfish (Sebastes variabilis) and
Pacific ocean perch (Sebastes alutus), a 10% decrease in the number of tows sampled upon led to a predicted 5%–6% increase in
the CV of OFL (log–log slope = −0.576 to −0.486), which was greater than the 0%–2% increase from a 10% decrease in otoliths-
per-tow (log–log slope = −0.238 to −0.029). Application of this approach across all stocks monitored in the survey of interest
is required to identify which stocks (i) benefit the most from increased sampling of ageing structures or (ii) cost the least in
terms of OFL uncertainty owing to reduced sampling.
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Introduction
Sustainable fisheries management is contingent upon

sound advice informed by the results of stock assessments,
which describe the population dynamics of the resource and
provide recommendations for future catch limits (Methot
and Wetzel 2013). Stock assessments rely on data col-
lected from the fisheries harvesting the resource (fisheries-
dependent data) and fisheries-independent surveys (e.g., bot-
tom trawl surveys). Fisheries-independent surveys are often
weighted highly in stock assessments owing to appropriate
selection of the gear employed, consistency in where, when,
and how sampling occur, and high availability of the stock to
the survey (Board 2000; Chen et al. 2003; Pennino et al. 2016).

However, the costs associated with conducting fishery-
independent surveys and processing the resulting biological
samples can be substantial given the frequency and the broad
spatial scale over which such surveys operate. In addition,
the funding available to conduct fisheries-independent sur-
veys is often fixed, creating a constraint on the amount of
ship time available, tows that can be performed, and samples
that can be collected and processed. Therefore, it is impor-
tant to consider potential avenues for optimizing sampling

efficiency across species of interest or areas of survey cov-
erage. For example, surveys conducted in the Gulf of Alaska
(GOA) and eastern Bering Sea (EBS) by National Oceanic and
Atmospheric Administration (NOAA) Fisheries’ Alaska Fish-
eries Science Center (AFSC) often involve multiple chartered
vessels whereby tows are conducted across the survey area
under a stratified random or systematic design (von Szalay
and Raring 2018; Lauth et al. 2019). A wealth of information
on catch, effort, biology, and life history are collected during
these surveys, in addition to sampling of biological structures
for ageing (e.g., otoliths).

A major question that is often asked in survey science is
how to optimize the distribution of biological sampling ef-
forts across species without increasing survey effort (num-
ber of ships, number of tows conducted, number of work-
ing days, etc.). For example, previous research on sampling
protocols for Atlantic cod (Gadus morhua) on the North Sea
International Bottom Trawl Survey conducted by the Interna-
tional Council for the Exploration of the Sea (ICES) has shown
that the number of fish sampled for ageing could be reduced
by at least 50% without a substantial loss of precision in the
estimation of abundance-at-age (Jourdain et al. 2020). How-
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ever, it is also important to quantify any potential changes in
catch recommendation uncertainty that might result from a
change in sampling effort, as well as the associated change
in cost across alternative sampling treatments. Catch recom-
mendations (e.g., for the acceptable biological catch, “ABC”)
are sometimes related to the perceived extent of uncertainty
in estimates from stock assessments (Shertzer et al. 2008;
NPFMC 2020). This is typically accomplished with the appli-
cation of harvest control rules, which takes projected catch
(i.e., the overfishing limit, “OFL”) and applies a buffer that en-
sures the true OFL will not be exceeded given uncertainty in
the assessment process. Thus, given information on the costs
associated with processing biological samples, it is possible to
summarize the effect of changes to sampling rates on costs
and uncertainty in OFLs estimated across model fits employ-
ing replicate simulated data sets.

Aside from costs, changes in sampling effort may affect
the uncertainty of data products and how those data are
weighted in stock assessment models. Data products used in
stock assessments have an influence on the outputs gener-
ated. It is therefore important to correctly weight the infor-
mation content of those data to ensure that a good match ex-
ists between the variance of the data and that implied by the
model (Francis 2017). Stewart and Hamel (2014) reviewed sev-
eral approaches for setting the “sample size” of age-/length-
composition data (the weight assigned in the stock assess-
ment to each annual age-composition), which range from
(1) using the number of fish sampled each year (nominal sam-
ple size); (2) setting a fixed value across all years; (3) taking
the square root of the product of the number of samples and
hauls; or (4) bootstrapping the data, calculating the variance
among bootstrap replicates, and approximating this variance
via the equivalent sample size for a multinomial distribu-
tion. Alternative estimators have been proposed, including
stratified estimators (Miller and Skalski 2006), a normal ap-
proximation (Thorson 2014), and model-based expansion of
compositional data (Thorson and Haltuch 2019), where the
latter is analogous to propagating the joint imprecision in
models that use a normal distribution for abundance-at-age
(Berg and Nielsen 2016). Regardless of the method used for
generating input sample sizes, these input sample sizes are
typically either retained or iteratively tuned while fitting the
model when a multinomial likelihood is employed for com-
positional data. In the tuning process, the estimated sam-
ple size that results based on the fit of the composition data
(effective sample size) replaces the initial input sample size
(Maunder 2011; Hulson et al. 2012). A variation of this tuning
process (Francis re-weighting) involves calculating a weight
based on expected and observed mean proportions-at-age, ap-
plying this to the original suite of input sample size, and
re-fitting the model with this “re-weighted” set of values as
the input sample size (eq. TA1.8 in Francis 2011). This re-
weighting process is important for ensuring that the com-
position data are appropriately weighted (i.e., there is a good
match of the variance between data and that implied by the
model) relative to other data sets used for parameter estima-
tion.

The main objectives of this study were to (1) develop a stan-
dardized framework (bootstrap estimator), which allows the

user to explore the effect of changes in sampling rate on
input sample size calculations and catch recommendation
uncertainty and (2) associate a monetary cost to changes in
otolith ageing efforts. The methods described below were ap-
plied to survey data for GOA stocks of walleye pollock (Gadus
chalcogrammus), Pacific ocean perch (POP; Sebastes alutus), and
dusky rockfish (Sebastes variabilis), which are surveyed by the
AFSC using bottom trawl surveys and exploited by fisheries in
the region. However, this framework could also, in principle,
be applied to data from fishery-dependent monitoring.

Methods
A bootstrap estimator was developed to quantify the ef-

fect of changes to otolith sampling rates on input sample
sizes. Input sample sizes and age-compositions generated us-
ing this estimator were then used in stock assessments to de-
termine the influence that changes in sampling rates (based
on changing the number of tows from which age samples are
collected or the number of otoliths sampled per tow) have
on uncertainty in catch recommendations. Finally, costs as-
sociated with processing and reading otoliths were then ap-
plied to the number of otoliths generated across sampling
rate treatments to determine an average annual age-reading
cost (in units US$·year–1) for each treatment (see Fig. 1 for a
flow chart summarizing this framework).

In summary, this study design involved three species and
two sampling methods, where each combination of species
and method was analyzed using five sample-size “treat-
ments”. Each treatment was replicated 200 times (hereinafter
termed “specimen bootstraps”), and each replicate involved
100 bootstraps of the expansion process (hereinafter termed
“expansion bootstraps”), where the expansion bootstraps
were used to calculate an input sample size for each specimen
bootstrap replicate. This design therefore involved a total of
600 000 calculations of abundance-at-age, resulting in 6000
replicate assessments across species, sampling methods, and
treatments.

Bootstrap estimator
We first explored how changes in otolith collection and

age-reading effort affect the calculation of input sample sizes,
which are used to quantify the variance in age-composition
information. The bootstrap estimator used to calculate an-
nual input sample sizes was based on an existing method
for expanding survey length and age information developed
by the AFSC. The expansion process uses annual, stratum-
specific length information, survey catch-per-unit-effort, and
stratum area to calculate annual stratum-specific numbers-
at-length (“first-stage expansion”; see von Szalay and Raring
2018; Lauth et al. 2019 for details). For each year of data,
the calculated numbers-at-length are summed across strata
and converted into numbers-at-age using year-specific age–
length keys constructed from specimens that have both age
and length information recorded (second-stage expansion).

The bootstrap estimator developed for this study had two
levels of bootstrapping (Fig. 2). The first bootstrapping pro-
cess conducted (the “specimen bootstrap”) was used to com-
pute the uncertainty in the input samples sizes and the
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Fig. 1. Flow chart depicting the approach taken to generate input sample sizes and age compositions from the bootstrap
estimator, how these were used to conduct stock assessments and generate catch recommendations, and the associated catch
recommendation uncertainty with ageing costs across sampling rate treatments.

Fig. 2. Flow chart describing a single iteration of the bootstrap estimator, including the different processes of the “specimen
bootstrap” and the “expansion bootstrap”. The bootstrap estimator was used to generate 200 data sets for each sampling
treatment. RACE refers to the Resource Assessment and Conservation Engineering Division of the Alaska Fisheries Science
Center (NOAA Fisheries).

survey age-compositions. The second bootstrapping process
conducted (the “expansion bootstrap”) was used to compute
annual input sizes given a data set of length-composition,
resampled specimen data on age and lengths generated
from the “specimen bootstrap” (i.e., age–length keys), and
the resulting age compositions constructed for each “expan-
sion bootstrap” replicate. The survey abundance indices and
length-compositions were not varied in either of these boot-
strapping steps so their uncertainty is not accounted for.

The “specimen bootstrap” facilitated an evaluation of how
changes to sampling rates impacted the calculated annual in-
put sample sizes. This bootstrapping process involved sam-
pling the original specimen age data while making two po-
tential changes (termed “sampling methods”):

1. “Tows changed”——Increasing or decreasing the number of
tows that otoliths were sampled on, corresponding to a
hypothetical increase or decrease in funding for total sur-
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vey days at sea (e.g., owing to less time spent sorting the
tow catch or less time performing shipboard otolith dis-
sections). This bootstrapping method addressed between-
tow variability; or

2. “Otoliths changed”——Increasing or decreasing the number
of sampled otoliths per tow, corresponding to a hypotheti-
cal increase or decrease in funding or speed for processing
otoliths in the lab after the survey is completed. This boot-
strapping method addressed within-tow variability.

For reference, otolith collections on the AFSC bottom trawl
survey in the GOA follow a random sampling design except
for some species not included in this analysis. Across the
western, central, and eastern regions of the stock area, up to
10 dusky rockfish and five Pacific ocean perch are collected
per tow. For walleye pollock, none are taken if fewer than
10 fish are caught, five fish are collected if 10–500 fish are
caught, and 10 fish are taken if over 500 are caught (RACE
2021).

For each species of interest and sampling method, five
sampling treatments were employed to change the level of
otolith sampling by 0%, ±33%, and ±67%. For each sampling
method, the specimen bootstrapping process cycled through
every year of survey data, recorded the unique tow identi-
fiers for each year, and sampled from them. Under the “tows
changed” method, the tow IDs were re-sampled with replace-
ment at the designated rate, and the otolith-derived age in-
formation associated with the selected tow IDs was included
in the new data set. For the “otoliths changed” method,
the number of tows sampling otoliths was not changed, but
the tow IDs were resampled with replacement. Under this
method, an additional step was conducted whereby every
tow ID from the resampled selection was cycled through,
and the number of otoliths on those tows was changed
by the designated rate. This “specimen bootstrap” was con-
ducted 200 times to create 200 new realizations of age data
sets for each treatment, method, and species (denoted m in
Fig. 2).

The “expansion bootstrap” involved resampling each of
the 200 bootstrapped specimen data sets described above
to generate 100 age–length keys per “specimen bootstrap”
replicate, and then applying those age–length keys to the
length-compositions to create 100 unique matrices of sur-
vey proportions-at-age (i.e., age compositions) per “specimen
bootstrap” replicate. The purpose of this bootstrap was to
generate replicated compositions to use in the calculation
of NInput. This bootstrap involved resampling tows from the
available set of tows and otoliths within tows while retain-
ing the sample sizes of tows or otoliths within tows. The ex-
panded age-composition information generated during each
of the 100 “expansion bootstrap” replicates was converted
into proportions-at-age (i.e., 100 proportions-at-age matrices).
The input sample size for a survey year t, NInput(t), was cal-
culated as a function of (1) the resampled proportions-at-age
by “expansion bootstrap” replicate (Pt,a,b; where b denotes
the expansion bootstrap and a denotes age) compared to
the mean proportions-at-age across the 100 “expansion boot-
strap” replicates (P̂t,a; eq. 1) and (2) the harmonic mean across
bootstrap replicates (eq. 2), which has been found to be rel-

atively unbiased (McAllister and Ianelli 1997; Stewart and
Hamel 2014):

Nt,b =
∑

a=1 Pt,a,b × (1 − Pt,a,b)∑
a=1

(
Pt,a,b − P̂t,a

)2(1)

NInput (t ) =
(∑

b=1 N−1
t,b

100

)−1

(2)

The calculated input sample sizes, total number of otoliths
sampled (i.e., nominal sample size), and number of tows
conducted were recorded across bootstrapping methods and
sampling rate treatments. In summary, this process gener-
ated 200 vectors of annual input sample sizes and 200 age-
composition matrices per treatment, method, and species;
together these data products were used in replicate assess-
ment model runs (described below). To justify the number
of “specimen bootstrap” replicates conducted, we ran ad-
ditional “specimen bootstrap” replicates for dusky rockfish
under the “tows changed” scenario for each sampling rate
treatment and calculated NInput when 100, 200, 300, 400, and
500 “specimen bootstrap” replicates were included. As seen
in Table A1, calculated NInput was stable across trials that
used an increasing number of specimen bootstrap replicates.
In addition, to justify the number of “expansion bootstrap”
replicates we increased the number of “expansion bootstrap”
replicates from 100 to 1000 for a single “specimen bootstrap”
replicate for dusky rockfish across the five sampling rate
treatments under the “tows changed” sampling scenario. The
results of calculating NInput when utilizing 100 (original), 500,
and 1000 replicates of age composition (Table A2) show that
NInput was stable across trials, justifying the use of only 100
expansion bootstrap replicates for each replicate of specimen
bootstraps.

We then calculated the slope of a log–log relationship be-
tween (i) input sample size and the number of otoliths (nom-
inal sample size, “NNominal”) or (ii) input sample size and the
number of tows (Tows) using linear mixed models using the
glmmTMB package in R (version 1.1.2; Brooks et al. 2017).
Mixed-effects models were used for this analysis owing to the
nature of the data, whereby multiple measurements of sam-
ple size taken over time are considered, suggesting some de-
gree of non-independence. These slopes were interpreted as
the expected percent change in NInput per percent change in
nominal sample size or number of tows for a given sampling
method (i.e., “tows changed” vs. “otoliths changed”). The rela-
tionship between input sample size and nominal sample size
was defined as

log
[
Ninput (t, m)

] = α (t ) + β (t )

×log [Nnominal (t, m)] + ε (t, m)

(3)

where ε (t, m) ∼ Normal
(
0, σ 2

residual

)
is the residual for year

t and specimen bootstrap m with variance σ 2
residual. The

intercept for each year, α(t), is treated as a random ef-
fect, with mean α0 and among-year variance σ 2

α , i.e., α (t ) ∼
Normal

(
α0, σ

2
α

)
. The slope for each year, β(t), is also treated
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as a random effect with mean β0 and among-year variance

σ 2
β , i.e., β (t ) ∼ Normal

(
β0, σ

2
β

)
. For each species, we then

recorded the average slope β0 as well as shrunk estimates of
slope for each year β(t) to calculate the log–log sensitivity to
changes in the nominal sample size. We then repeated this
using log(Ntows(t,m)) in place of log(Nnominal(t,m)) and recorded
the log–log sensitivity to changes in the number of tows. Ad-
ditional models were fit to the data from each year separately,
and the results of these model fits are reported below.

Estimation of catch recommendation
uncertainty

We next explored how changing input sample sizes affects
data weighting. Effective sample sizes (NEff) were computed
assuming that the age-composition data followed a multi-
nomial distribution and using the Francis approach to data
weighting (Francis 2011):

NEff (t ) = Ninput (t ) × w(4)

where w was the weight calculated using eq. TA1.8 from
Francis (2011). The process of fitting the assessment model
followed by application of eq. 4 was repeated three times.

Stock assessments were conducted using the proportions-
at-age and input sample sizes from each of the 200 “specimen
bootstrap” replicates. The three stocks included in this study
are Tier 3 stocks under the North Pacific Fishery Management
Council’s fishery management plan for the GOA stock area.
This means that reliable estimates of the spawner–recruit re-
lationship are not available, but proxies for BMSY and FMSY (i.e.,
B40%, F35%, and F40%) can be estimated (NPFMC 2020). Conse-
quently, the fishing mortality used to compute the OFL is set
according to the following equation:

FOFL,y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if By/B40% < 0.05

F35%

(
By/B40% − 0.05

)
(1 − 0.05)

if 0.05 ≤ By/B40% < 1

F35% if By/B40% > 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭(5)

where F35% is the fully selected fishing mortality correspond-
ing to a 65% reduction in spawning biomass-per-recruit, B40%

is 40% of the estimate of unfished spawning biomass, and By

is the spawning biomass in year y. The OFL for year y is then
set using eq. 6:

OFLy =
∑

a

Wa
FOFL,y∗ Sy∗,a

Zy∗,a
Ny∗,a

(
1 − e−Zy∗ ,a

)
(6)

where Ny∗,a is the estimate of the number of fish of age a at
the start of the year for which an OFL is needed (y∗), Zy∗,a is
the total mortality-at-age (which depends on FOFL ,y∗), Wa is the
weight-at-age, and Sy∗,a is selectivity-at-age for year y.

Following the model-fitting procedure, distributions of OFL
were generated from the model output. The standard devia-
tion and coefficient of variation of the OFL estimates (SD OFL
and CV OFL) were calculated across replicates using the mean
OFL from the 0% treatment to capture the actual change in
uncertainty that might result from the various sampling rate

treatments. Calculating SD OFL and CV OFL in this manner
allowed for the among-bootstrap variance in OFL to be deter-
mined for each sampling rate treatment relative to the status
quo OFL, which in turn allowed quantification of the costs
and benefits of reducing or increasing data in the currency
of uncertainty instead of the currency of uncertainty rela-
tive to a shifting estimate of OFL. US Fishery Management
Councils have adopted formal methods to account for scien-
tific uncertainty when making catch recommendations. One
common method is the “P-star (P∗) approach” (Shertzer et al.
2008; Ralston et al. 2011), whereby (i) a level of uncertainty
in the OFL or terminal year biomass is estimated or specified
(e.g., a “sigma” value), (ii) a P∗ value is specified to represent
the acceptable probability of exceeding an OFL due to scien-
tific uncertainty, and (iii) a form is assumed for a probability
density function to capture the scientific uncertainty in the
OFL (e.g., lognormal). Together, these assumptions are used
to develop a buffer between the OFL and the ABC. Therefore,
while our method for calculating OFL uncertainty based on
variance across bootstrap replicates is specific to this study,
it could be used to inform the specified sigma value when
model-estimated uncertainty is unavailable.

Levene’s test for homogeneity of variance (Levene 1960)
was used to test for significant differences in the variance
of OFL distributions between sequential pairs of sample-size
treatments (e.g., variance of OFL distributions between the
−67% vs. −33% treatment, −33% vs. 0% treatment, etc.), as
this test is less sensitive to departures from normality than
Bartlett’s test (Bartlett 1937). A significant difference in the
variance of OFL distributions between two treatments would
suggest that the change in otolith sampling led to input sam-
ple sizes (i.e., initial weightings) and age compositions that
had a statistically significant effect on the uncertainty related
to OFL estimates.

In addition, we calculated the slope of a log–log relation-
ship between the CV of OFL and the number of otoliths (nomi-
nal sample size, NNominal) using linear mixed models similar to
eq. 3 above, but replacing CV OFL for NInput. Here, owing to the
nature of CV OFL estimates (i.e., a single value per treatment
instead of annualized estimates), year was removed from the
analysis. These slopes were interpreted as the expected per-
cent change in CV OFL per percent change in nominal sam-
ple size for a given sampling method (i.e., “tows changed” vs.
“otoliths changed”). This analysis was conducted to summa-
rize the effect of changes in otolith sampling on uncertainty
in catch recommendations.

Analysis of ageing cost
Costs and efforts associated with ageing species surveyed

by the AFSC are summarized by Lambert et al. (2017). In the
current study, this information was used in conjunction with
AFSC full-time employee (FTE) salary rates calculated per 8 h
day (including indirect costs) to determine the cost associ-
ated with ageing the number of otoliths sampled across the
designated sampling rate treatments. Based on Lambert et al.
(2017), an age reader can age 8.1 dusky rockfish, 12.5 Pacific
ocean perch, or 27.2 walleye pollock otoliths per day on av-
erage. This equates to 1.0, 1.6, and 3.4 otoliths per hour for
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dusky rockfish, Pacific ocean perch, and walleye pollock. Di-
viding FTE salary-per-day by otoliths-per-day resulted in a cost
of $62.50, $40.50, and $18.61 per otolith, respectively. A limi-
tation of this cost function is that it does not incorporate costs
associated with ship time (e.g., fuel, charter days, personnel
time, or overtime for the ship crew and science crew, etc.).
We therefore assume that the underlying costs of the survey
are constant given that the total number of survey tows must
remain the same. However, a scenario where per-tow otolith
collections are reduced and otoliths are collected on more of
the tows conducted could be evaluated if needed.

A cost relationship was created for each species based on
the salary of AFSC FTEs and the number of otoliths that can
be aged each day on average from 2008 to 2016. To calcu-
late the number of otoliths that the per-otolith cost would
be applied to, for each “expansion bootstrap” replicate, the
total nominal sample size was first summed across years the
survey was conducted (survey years) and then divided by the
number of survey years (i.e., number of otoliths collected per
survey year). Then, these values were averaged across “speci-
men bootstraps” and multiplied by the per-otolith cost. These
costs were calculated for each sampling rate treatment and
sampling method.

Example applications
The methods described above were applied to GOA stocks

of walleye pollock, Pacific ocean perch, and dusky rock-
fish, which are surveyed by the AFSC using bottom trawl
surveys and exploited by fisheries in the region. The three
example stocks, respectively, capture a relative range of
data-rich (walleye pollock, N = 18 353 otolith ages from
1990 to 2019; ABC = 105 770 t, CV ABC = 0.21), to data-
moderate (Pacific ocean perch, N = 16 984 from 1990 to
2019; ABC = 36 164 t, CV ABC = 0.35), and data-poor stocks
(dusky rockfish, N = 9752 otolith ages from 1984 to 2019;
ABC = 7097 t, CV ABC = 0.31). However, we acknowledge that
all of these stocks may be considered data-rich if compared
to all stocks worldwide. Here, estimates of ABC and CV ABC
provided were taken from recent stock assessments (2020) to
characterize the level of uncertainty in catch recommenda-
tions. These otolith sample numbers are often reduced in the
process used to expand age information for survey area and
catch-per-unit-effort owing to mismatches in stratum-specific
age–length keys (i.e., paired age and length data for individu-
als collected for otolith extraction in each stratum) employed
to convert expanded length information to expanded age in-
formation (2%–30% reduction across all survey years depen-
dent upon stock). This is largely due to the nature of data
collection on each tow, where length frequency information
is collected from one group of individuals, otoliths are dis-
sected from a different group of individuals, and length data
are not merged between the two sources.

GOA stock assessments for the three species (Dorn et al.
2020; Fenske et al. 2020; Hulson et al. 2020 for dusky rock-
fish, Pacific ocean perch, and walleye pollock, respectively)
are conducted using a statistical age-structured model devel-
oped in AD Model Builder (Fournier et al. 2012), which con-
sists of (i) a population dynamics model fit to survey and

fishery data (Table A3) that calculates population estimates
across time and (ii) a projection model that predicts future
population estimates based on results from the population
model, resulting in biological reference points (e.g., ABC,
OFL).

Input sample sizes are currently used in these stock as-
sessments assuming a multinomial likelihood for length- and
age-compositions (referred to as “multinomial input sample
sizes” herein). For dusky rockfish, these annual input sample
sizes are calculated in the stock assessment as the square root
of the product of the number of samples collected and the
number of tows conducted, scaled to a maximum of 100. For
Pacific ocean perch, the annual input sample sizes are calcu-
lated as the square root of the number of samples collected.
For walleye pollock, a fixed starting value of 60 is used across
years and iteratively tuned based on the Francis reweighting
method (eq. TA1.8 in Francis 2011).

In the current study, input sample sizes generated by the
bootstrap estimator were used in assessment model repli-
cates to set starting weights. For all three stocks, the multi-
nomial likelihood was employed along with the Francis ap-
proach for data weighting (three iterations) to calculate NEff(t)
(eq. 4). We note that although stock assessments often as-
sume a multinomial likelihood for compositional data, this
assumption is typically violated. To illustrate this, we con-
ducted an analysis to compare the covariance of age com-
positions generated by the bootstrap estimator to the co-
variance of a multinomial distribution for a randomly cho-
sen data set. We chose a single species-treatment combina-
tion (dusky rockfish and the 0% treatment) and calculated
the covariance matrix for the proportion-at-age of a single
year (2019) across bootstrap replicates. To calculate the co-
variance of a multinomial distribution, we set the sample size
equal to the average NInput across bootstrap replicate for 2019
(NInput = 169) and the probability distribution equal to the ac-
tual proportions-at-age. The covariance of the bootstrapped
age compositions does not exactly match the multinomial
covariance: the diagonals do not substantially differ, but the
covariance of the bootstrapped compositions has positive val-
ues in the off-diagonals and the pattern of covariances in the
off-diagonals is not smooth as it is for the multinomial co-
variances (Fig. A1). While this is a pertinent topic for future
research, we think that it is more appropriate if we followed
standard practices currently employed at the institution that
conducts the surveys and stock assessments included in our
study (i.e., assuming that the sampling variance is multino-
mial).

For comparison to the distributions of OFL, reference
model runs were conducted for each species using the me-
dian annual input sample sizes over the 200 “specimen boot-
straps” for the 0% sampling rate treatment (no change in
tows or otoliths-per-tow), age compositions calculated from
original survey data (no resampling), and the multinomial
likelihood (with Francis re-weighting; eq. TA1.8 in Francis
2011). The estimates of OFL that were generated from these
model runs were compared to the distributions of OFL from
each “specimen bootstrap”, with the goal of gauging the
influence of using the NInput(t) from this study in actual
assessments.
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Fig. 3. Input sample sizes calculated using the bootstrap estimator related to the number of otoliths collected (Otoliths),
otoliths collected per tow (Otoliths/Tow) and tows conducted (Tows), averaged across bootstrap replicates for each sampling
rate treatment. Results reported in the “Otoliths” and “Otoliths/Tow” columns correspond to the “otoliths changed” sampling
process employed in the bootstrap estimator, while the results reported in the “Tows” column correspond to “tows changed”
sampling process. Results shown are for the years 1993 (circles), 2007 (squares), and 2019 (diamonds).

Results

Bootstrap estimator
Input sample sizes (calculated using eqs. 1 and 2) in-

creased as the number of otoliths, number of otoliths-within-
tows, or the number of tows sampled for otoliths increased
(Fig. 3, showing example years, 1993, 2007, and 2019). As
designed, the number of tows did not change under the
“otoliths changed” sampled method. However, otoliths-per-
tow changed slightly under the “tows changed” sampling
method owing to bootstrapped sampling of tows with varying
numbers of otoliths. There was also variability in the calcu-
lated input sample sizes across years related to the variabil-
ity in nominal sample size and number of tows conducted,
which likely reflects species availability to the survey and
changes to sampling protocols across time (Fig. 3).

Using linear mixed models, the relationship between (i) in-
put sample size and nominal sample size (NomSS) and (ii) in-
put sample size and number of tows (Tows) was described on
a log–log scale. The year-specific log–log slopes of these rela-
tionships (Table A4; Fig. 4) were generally higher and more
variable under the “tows changed” method (mean = 1.065;
range = 0.379–1.708 across species) compared to the “otoliths
changed” method (mean = 0.599; range = 0.214–0.808 across
species). This also held true under the summary models
where year was treated as a random effect, with sum-
mary model slopes higher for the “tows changed” method

(mean = 1.065; range = 1.025–1.114 across species) com-
pared to the “otoliths changed” method (mean = 0.601;
range = 0.570–0.640 across species). This suggests that there
is a larger impact on calculated NInput when the number of
tows is changed relative to when the number of otoliths-per-
tow is changed.

Estimation of catch recommendation
uncertainty

Stock assessment model runs that employed the bootstrap
replicates of input sample size and age composition gen-
erated distributions of OFL (Fig. 5) for each sampling rate
treatment (Table 1). In general, the distributions of OFL es-
timates overlapped (Fig. 5), but the OFL distributions result-
ing from reduced sample size treatments were broader (i.e.,
more variability among experimental replicates) than the 0%
treatment.

Overall, the mean OFL for walleye pollock declined as
sampling rate was reduced from +67% to −67% across the
“otoliths changed” (4650 t decline) and “tows changed”
(5277 t decline) bootstrap sampling methods (Table 1), in-
dicating some conflict among the data sources included in
the assessment. However, under the “tows changed” method,
most of these declines occurred when sample sizes were
decreased from the 0% treatment to the −67% treatment
(3350 t), while mean OFLs estimated using data from the
increased sampling treatments did not change as much
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Fig. 4. Slopes of the log–log relationships between (i) in-
put sample size and number of otoliths sampled (“otoliths
changed”; eq. 3; black, left column) and (ii) input sample size
and number of tows conducted (“tows changed”; eq. 3; grey,
right column). Log–log slope is interpreted as the expected
percent change in input sample size per percent change in
the number of otoliths processed or number of tows con-
ducted.

(1310 t). Under the “otoliths changed” method, changes in
mean OFL were similar regardless of the directionality of
sampling rate changes (2625 t increase as sampling rate in-
creased; 2652 t decrease as sampling rate decreased). Un-
certainty in OFL estimates calculated across bootstrap repli-
cate model runs generally declined as sampling rate was in-
creased from the −67% treatment to the 0% treatment regard-
less of sampling method employed (Fig. 6). However, uncer-
tainty in the OFL remained relatively unchanged across mod-
els runs that used data from the 0%, +33%, and +67% treat-
ments under the “otoliths changed” sampling method. Lev-
ene’s tests conducted on sequential pairs of OFL distributions
suggested that significant differences in variance existed be-
tween the −67% and −33% distributions of OFL under the
“otoliths changed” method and between the 0% and +33%,
and the +33% and +67% distributions of OFL under the “tows
changed” method (Table A5).

In comparison, mean OFL for Pacific ocean perch did not
change much across sampling treatments under either sam-
pling method (max. difference = 540 t for the “otoliths
changed” method; max. difference = 1473 t for the “tows
changed” method; Table 1). However, there was a clear de-
cline in the uncertainty of the OFL as sampling rate increased
under the “tows changed” method. Under the “otoliths
changed” method, this pattern was not as marked but re-
mained. Levene’s test conducted on sequential pairs of OFL
distributions resulted in significant differences in variance

between the 0% and +33% treatments under the “otoliths
changed” method and between the −67% vs. −33% and
0% vs. +33% treatments under the “tows changed” method
(Table A5).

For dusky rockfish, mean OFL changed very little across
sampling treatments under both sampling methods (max. dif-
ference = 59 t under the “otoliths changed” method; max.
difference = 77 t under the “tows changed” method; Table 1).
However, trends in OFL uncertainty were similar to those ob-
served for Pacific ocean perch under the “tows changed” sam-
pling method, with a clear decline in SD OFL and CV OFL as
sampling rate increased (Fig. 6). Levene’s test conducted on
sequential pairs of OFL distributions suggested that a signifi-
cant difference in variance existed between the 0% and +33%
treatments under both sampling methods and between the
−67% and −33% treatments under the “tows changed” sam-
pling method (Table A5).

Using linear mixed models, the relationship between CV
of OFL and nominal sample size (NNominal) was described on
a log–log scale. The log–log slopes of these relationships
(Table 2) were more negative under the “tows changed”
method for dusky rockfish and Pacific ocean perch (range =
−0.576 to −0.486 across species) compared to the “otoliths
changed” method (range = −0.238 to −0.029 across species).
This suggests that for these species there is a larger reduction
in estimated CV of OFL as the number of tows is increased
from the −67% to the +67% treatment relative to when the
number of otoliths-per-tow is changed.

The relationship between effective sample size (after three
iterations of Francis reweighting) and input sample size is re-
ported in Table 1 and Fig. A2. This relationship captures the
effect of changes to sampling on variance in bootstrapped age
compositions and subsequently how the assessment model
perceives the contribution of age compositions. From Fig. A2,
it is clear that changes to sampling of walleye pollock affect
the calculated input sample size but have no effect on the
(model calculated) effective sample size. In contrast, dusky
rockfish and Pacific ocean perch display a relationship of di-
minishing returns on information content (effective sample
size) as sampling is increased under the “tows changed” sam-
pling method.

Analysis of ageing cost
Per-otolith costs defined above were multiplied by the

nominal sample size per survey year (NNominal/year) averaged
across specimen bootstrap replicates to calculate total age-
ing costs per survey year (US$·year–1) associated with each
sample-size treatment. In the interest of comparison to the
0% treatment, costs were calculated as a change from the 0%
treatment. These costs increased as sampling increased, but
the cost per otolith varied among species based on the num-
ber of otoliths that can be aged per day (Table A6).

For dusky rockfish, the calculated change in cost ranged
from US$−16 435 to US$+19 446·year–1 across increasing
sampling rate treatments under the “otoliths changed” sam-
pling method, and from US$−17.965 to US$+17.813·year–1

across treatments under the “tows changed” method. For
Pacific ocean perch, the calculated change in costs ranged
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Fig. 5. Distributions of overfishing limit (OFL) estimated for 2021 in assessment model runs that used data from the “otoliths
changed” and “tows changed” sampling methods. Treatment refers to sets of runs that used data from each sampling rate
treatment (±0%, ±33%, ±67%). The black line denotes a value of OFL calculated using the median input sample size across
specimen bootstrap replicates for the 0% treatment, non-bootstrapped age compositions, and a multinomial likelihood (with
Francis re-weighting).

from US$−26 158 to US$+29 930·year–1 across increasing
sampling rate treatments under the “otoliths changed” sam-
pling method, and from US$−27 728 to US$+27 454·year–1

across treatments under the “tows changed” method. For
walleye pollock, the calculated change in costs ranged from
US$−14 773 to US$+17 272·year–1 across increasing sam-
ple rate treatments under the “otoliths changed” sampling
method, and from US$−16 023 to US$+15 917·year–1 across
treatments under the “tows changed” method.

Discussion
In this study, we first demonstrated how existing compo-

sitional expansion methods can be used in a standardized
framework to generate input sample sizes for use as compo-
sitional weights in stock assessments. In addition, we demon-
strated how the increase of survey tows (from −67% to +67%
treatments) that provided otoliths for ageing on bottom trawl
surveys tends to have a larger impact than changes in the
number of otoliths per tow on both (i) the input sample sizes
and (ii) the uncertainty in estimates of OFL that result from
using them for weighting age-composition information in
stock assessments. To fully capture the uncertainty and im-
portance of age information, this suggests that otolith collec-
tions should be distributed across as many tows as possible.
This finding is consistent with previous work by Pennington

et al. (2000), who recommended reduced tow durations to ac-
commodate more stations on trawl surveys. Finally, by link-
ing realizations of nominal sample size-per-survey year to
ageing costs-per-otolith, we have also demonstrated that po-
tential tow-based changes to otolith sampling could affect
survey costs more than otolith-based changes to sampling.

In any examination of sampling efficiency where the sam-
pling process is part of a larger scientific enterprise (i.e.,
sample collection, data processing, assessment model fitting,
management advice, or satisfied industry partners), it is im-
portant to clearly define what an “optimal scenario” would
be. However, the challenge herein is that the definition of op-
timal might be different for each partner to that enterprise.
To a survey team collecting data, an optimal scenario might
be one where sampling designs are efficient enough to sat-
isfy logistical constraints but robust enough to ensure that
the data products they provide are of high quality. To an as-
sessment scientist, an optimal scenario might be one where
uncertainty in parameter estimates and catch advice is mini-
mized. To a fisheries manager, an optimal scenario might be
one where the stock remains healthy with minimized fore-
gone yield, while for a member of the fishing industry, an
optimal scenario is likely one where revenue is maximized.
Here, we have developed a generalized framework where sur-
vey and assessment scientists can explore sampling scenar-
ios and the effect that those scenarios have on catch recom-

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
O

A
A

 C
E

N
T

R
A

L
 o

n 
02

/1
0/

23

http://dx.doi.org/10.1139/cjfas-2022-0050


Canadian Science Publishing

124 Can. J. Fish. Aquat. Sci. 80: 115–131 (2023) | dx.doi.org/10.1139/cjfas-2022-0050

Table 1. Overfishing limit (OFL) and standard deviation estimated for 2021 averaged across as-
sessment model runs that utilized input sample sizes and age compositions generated using the
bootstrap estimator (m = 200 “specimen bootstrap” replicates per sampling treatment).

Method Species Sampling treatment NNominal NInput NEff OFL (t) OFL SD (t)

Otoliths
changed

Dusky rockfish −67% 163 73 10 8 392 255

−33% 311 109 10 8 424 248

0% 426 130 9 8 441 273

+33% 587 153 9 8 451 240

+67% 738 172 9 8 435 243

Pacific ocean perch −67% 375 152 64 39 818 1 371

−33% 740 247 67 39 462 1 154

0% 1 021 302 68 39 315 1 275

+33% 1 391 356 65 39 278 1 022

+67% 1 760 397 66 39 436 913

Walleye pollock −67% 493 304 6 115 801 4 663

−33% 927 457 6 117 204 4 129

0% 1 287 569 7 119 141 3 253

+33% 1 778 668 7 120 019 3 317

+67% 2 215 749 8 120 451 3 248

Tows
changed

Dusky rockfish −67% 139 44 7 8 518 443

−33% 286 86 9 8 507 310

0% 426 130 9 8 441 273

+33% 565 175 10 8 441 214

+67% 711 223 10 8 461 203

Pacific ocean perch −67% 337 96 52 40 626 2 192

−33% 684 200 62 39 760 1 487

0% 1 021 302 68 39 315 1 275

+33% 1 351 400 69 39 153 964

+67% 1 699 507 69 39 440 862

Walleye pollock −67% 426 159 6 116 489 4 905

−33% 858 354 6 116 988 4 241

0% 1 287 569 7 119 141 3 253

+33% 1 710 782 8 121 319 3 546

+67% 2 142 1 034 10 121 766 3 459

Note: Method refers to whether the number of otoliths on selected tows (“otoliths changed”) or number of tows sampled were
changed (tows changed). NNominal refers to the mean nominal sample size per year across “specimen bootstraps”, while NInput and
NEff refer to the mean input and effective sample size across “specimen bootstraps” and years.

mendation uncertainty. This work will help these interdisci-
plinary teams examine trade-offs and make informed judge-
ments on the level of sampling required to provide high-
quality data products that efficiently inform assessment mod-
els on the importance of their data products, and that result
in acceptable levels of uncertainty in catch advice.

We define an optimal scenario as one where sampling can
be reduced but not to a degree where a significant increase
in OFL uncertainty occurs. For example, in this study a re-
duction in sampling by 33% resulted in no significant differ-
ence in OFL uncertainty regardless of the sampling method
used or stock (Fig. 6; Table A5). Therefore, a change in sam-
ple intensity of this magnitude would afford additional sam-
pling effort (i.e., surplus sampling effort) that could be ap-
plied to a different stock that would benefit from an increase
in sampling in terms of reduced OFL uncertainty (e.g., dusky
rockfish or Pacific ocean perch; Fig. 6; Table A5). An ana-
lyst could use our framework to identify potential stocks
that would benefit from this surplus sampling effort. How-

ever, the precision of other model inputs is important to con-
sider in this context. Alternatively, we note that there are
species with very little age data relative to those used in this
study, and it could be worthwhile to allocate sampling effort
gained from the results of an analysis such as this to those
species. Not all of these species might need to be aged ow-
ing to relatively lower fishery importance, lower ecosystem
importance, or lack of an age-structured assessment model
currently in place. However, this status could change in the
future, and the framework developed here would help ana-
lysts weigh the trade-offs of a new sampling endeavor.

Owing to the logistical constraints of bottom trawl sur-
veys (i.e., set funding, set number of tows, etc.), it is easier to
make changes to the number of otoliths collected and read
for a species on each tow. However, marine fishes often form
aggregations with similar ages and lengths such that ages
and lengths are correlated for all fish in a given tow. Conse-
quently, increasing the number of tows from which otoliths
are collected for a given species would have a greater impact
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Fig. 6. Standard deviation of overfishing limit (SD OFL) and coefficient of variation (CV OFL) for each species (columns) and
sampling rate treatment (±%, x-axis). The mean OFL from the 0% treatment was used in calculation of the SD OFL and CV OFL.
Whiskers show 95% confidence intervals. Results are based on data generated from the “otoliths changed” (black) and “tows
changed” (grey) methods. Note: circles in the middle of a line corresponding to the 0% change treatment match exactly.

Table 2. Slope of the log–log relationship between
the coefficient of variation for overfishing limit
(CV OFL) and nominal sample size across sampling
treatments for each species and sampling method.

Species Method Slope

Dusky rockfish Otoliths changed −0.029

Tows changed −0.486

Pacific ocean perch Otoliths changed −0.238

Tows changed −0.576

Walleye pollock Otoliths changed −0.263

Tows changed −0.239

Note: Method refers to whether the number of otoliths on selected
tows (otoliths changed) or number of tows sampled were changed
(tows changed). Values of nominal sample size used were the mean
per year across bootstraps. Log–log slope is interpreted as the ex-
pected percent change in CV OFL per percent change in the nominal
sample size.

on the information content (Hulson et al. 2012; Kotwicki et
al. 2014). This suggests that it is possible to increase the in-
formation obtained by sampling fewer otoliths-per-tow and
instead increasing the number of tows sampled. The frame-
work we developed is generalized and could be applied to
stocks from other regions; however, to showcase the utility
of it, we review specific examples of how the findings herein
could be applied to refine protocols for our example region
(the GOA). In the context of the GOA bottom trawl survey,
sampling for otoliths is currently conducted randomly within
a tow. However, there are often stipulations in place based
on the number of individuals of a species that are caught
on a tow that dictates whether specimens are kept and how
many. For example, adult walleye pollock are only sampled
if more than 10 individuals are observed in a tow; if 10–500

fish are caught five are sampled, and if >500 are caught 10
are sampled (RACE 2021). Additional analysis could be per-
formed to identify how many tows would be sampled if the
threshold for sampling was increased from 10 fish to perhaps
20 or more. There are other species sampled on this survey
that have similar catch stipulations for retaining specimens
for otolith extraction, and a reduction in pollock sampling
could allow additional tows to be sampled for those species
by reducing the catch threshold for sampling. This would re-
quire including those species in the framework we have de-
veloped to identify which stocks would benefit in terms of
OFL uncertainty reductions. In addition, dusky rockfish and
Pacific ocean perch are currently sampled every tow they are
caught on, up to 5 and 10 individuals, respectively. Given that
the +33% otoliths-per-tow sampling treatment resulted in a
significant decrease in OFL uncertainty (Fig. 6; Table A5), this
framework could also be used to assess when an increase in
the number of otoliths taken per tow could benefit the stock
assessments (i.e., reducing the uncertainty in OFL).

Given the limited number of stocks in this study (i.e., three
out of 23 stocks or complexes assessed by the NPFMC in the
GOA stock area), there may be other stocks in this region that
would benefit more or cost less (in terms of sampling costs or
OFL uncertainty) as a result of changes to otolith sampling. In
addition, at least at the AFSC, the same ageing laboratory con-
ducts age readings for both the GOA and EBS stock areas, so
it is feasible to propose a change in sampling across species
within a stock area, or between species across stock areas.
Therefore, we suggest that this analysis could be applied to
more species in the GOA, as well as to species within the EBS
stock area, to determine how a change in sampling protocols
would achieve the most appropriate, cost-effective trade-off.
Further, the three examples we provide showed relatively lit-
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tle response in effective sample size across changes to input
sample size (Fig. A2). Since the calculation of effective sam-
ple size incorporates process error that could be the result
of model misspecification, down-weighting of input sample
size could reflect this misspecification instead of the explicit
effects of changes to sampling rate. Therefore, in future work,
it may be prudent to make comparisons between other stocks
that display more closely related changes in effective and in-
put sample sizes as a result of changes in ageing effort.

Despite our discussion of sampling, our analysis was fo-
cused on the effects of changes to ageing effort not collection
effort. Therefore, if agencies wish to retain current sampling
rates to provide insurance against a potential future need of
more samples, they could continue collecting individuals at
the current rate and make an adjustment to the number of
otoliths that are read in routine annual ageing campaigns.
Future needs could arise owing to structural changes to stock
assessment methods (e.g., a shift from sex-aggregated to sex-
specific, a change in the spatial stock structure, etc.), and we
suggest that with small changes to our generalized frame-
work (e.g., generating sex-specific age compositions and in-
put sample sizes, or generating these data products for strata
under new stock structure definitions) it could be an impor-
tant tool for assessing the effect of data collection strategies
on estimation of the OFL and uncertainty of the OFL.

In addition, as seen in Fig. 3, there was variation in calcu-
lated input sample size across years. This is directly related
to the amount of sampling that was initially conducted and
the nature of that sampling (i.e., inconsistent number of in-
dividuals sampled per tow or inconsistent number of tows
sampled per year). These inconsistencies led to higher vari-
ance than would be the case for an optimal design given the
bootstrapping process, which results in variation in the calcu-
lated input sample size. Unfortunately, the variation in catch
that leads to differential numbers of otoliths per tow is sim-
ply the nature of fishing operations, especially in a fisheries-
independent survey operation.

The framework we present is a generalized process that can
be employed to address various questions related to sampling
on fisheries-dependent and -independent platforms. The pre-
sented application of our framework is related to otolith sam-
pling and ageing; however, it could easily be adapted to ex-
plore questions related to length frequency, catch-per-unit-
effort, or other biological information routinely collected on
these platforms. One important source of uncertainty that
should be evaluated in the future involves the sampling de-
sign employed for AFSC surveys, whereby length frequency
information is collected separately from specimens that are
collected for ageing. This creates mismatches between the
length bins for expanded length compositions and those asso-
ciated with aged fish, resulting in “lost” ages when the age–
length key is applied to the expanded length compositions
in design-based estimators. Thus, the current analysis is ap-
propriate for evaluating age-reading costs and trade-offs in
an academic sense. However, to generate inputs used in for-
mal assessments, analysts should likely include sampling of
length frequency information at the tow level in the boot-
strapping process as well (i.e., add a level of sampling in the
estimator for the length expansion process). Other options

for addressing this issue would be to (1) explore spatially ag-
gregated (or constant) age–length keys that share informa-
tion with a stratum that is missing a length bin necessary
for expansion of ages or (2) share age–length key information
from nearby tows in other strata when this mismatch occurs
as Jourdain et al. (2020) did.

While we employed a random sampling design for select-
ing tows and otoliths-within-tows, many agencies still employ
a length-stratified sampling design for otolith collections.
Our framework can easily accommodate this in the sampling
process for otoliths-within-tows by (1) adding the definitions
for desired length bins, (2) slotting individual fish on each tow
into these bins, and (3) adding another loop within the tow
loop to cycle through length bins for sampling at the desired
rate. In addition, the model-fitting module of this framework
is also generalized, can be easily adapted for other stocks, and
can employ any desired likelihood for compositional infor-
mation (e.g., Francis reweighting as used here, the Dirichlet-
multinomial, etc.). However, stock assessment methodolo-
gies vary across the globe, so our application may be most
appropriate for US scientists. Some agencies (e.g., ICES and
Fisheries and Oceans Canada) use stock assessment models
that do not employ explicit data-weighting methods (e.g.,
state-space assessment models: Nielsen and Berg 2014; Woods
Hole Assessment Model (WHAM): Stock and Miller 2021). In-
stead, these models conduct data-weighting implicitly via the
choice of the likelihood function, correlation structure, and
subsequent estimation of covariance parameters. Therefore,
these assessment methods do not require input sample sizes
for explicit data-weighting methods, but they could still ben-
efit from the full “expansion” and “specimen” bootstraps as
they provide a better understanding of variation in the an-
nual sampling programs, and in the underlying populations.
In addition, the “specimen bootstrap” that resamples age
data at the desired sampling rate could be employed to cal-
culate alternative age compositions that result from changes
in sampling rate.

Bootstrap estimators are sometimes biased, and there are
defined methods for quantifying this bias (e.g., “the bootstrap
estimate of bias”, “the improved estimate of bias”, “the jack-
knife estimate of bias”; Efron and Tibshirani 1994). Naturally,
these estimates of bias can be used to correct an estimator for
this bias. However, Efron and Tibshirani (1994) note that bias
correction can be dangerous in practice owing to the possi-
bility of a bias-corrected estimator displaying a substantially
higher standard error that must be checked for. Regardless,
this would be a natural next step for research seeking to im-
prove the bootstrap estimator we developed for this study. In
this vein, one would need to weigh the bias estimated for the
bootstrapping process against the size of standard errors gen-
erated for a bias-corrected estimator and decide which prod-
uct is safer to use. However, this would require developing
a complex simulated data set that retains the hierarchical
structure of the length and age data collected on research
surveys that facilitates the sampling of tows, lengths- or ages-
within-tows, and then the resampling of these simulated data
for the calculation of NInput. The estimated bias could then be
applied to the estimator to correct for it, given that the stan-
dard error generated in this process does not outweigh the
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original bias that was estimated. Given the scope of this anal-
ysis, we think it is best pursued in a future study.

In conclusion, we recommend that science agencies inter-
ested in restructuring their sampling protocols employ the
framework developed here to quantify trade-offs and develop
optimal sampling strategies. We have demonstrated that
there are alternatives to current sampling regimes among
the species included here. Applying this process to a greater
number of stocks may elucidate a more effective strategy
for changes to sampling effort (i.e., which species can afford
decreased otolith sampling vs. those that would benefit the
most in terms of information content and OFL uncertainty).
This process would benefit from a parallel effort to gener-
ate model-based estimates of input sample size, which could
corroborate the design-based calculation of age compositions
and bootstrap estimates of input sample size. We also recom-
mend additional exploration regarding how changes in the
number of tows sampled from would simultaneously affect
the precision of indices of abundance.
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Appendix A
Tables A1–A6 and Figs. A1 –A2 appear on the following

pages.

Table A1. Mean input sample sizes (NInput) for dusky rockfish calculated with the bootstrap estima-
tor across “specimen bootstrap” replicates and years using m = 100, 200, 300, 400, or 500 “specimen
bootstrap” replicates per sampling treatment.

Sampling treatment m = 100 m = 200 m = 300 m = 400 m = 500

−67% 44 44 44 44 44

−33% 86 86 86 86 86

0% 129 130 130 129 129

+33% 176 175 175 175 175

+67% 222 223 223 222 222

Note: All trials were conducted under the “tows changed” sampling method (i.e., the number of tows sampled was changed).

Table A2. Input sample sizes (NInput) for dusky rockfish calculated using the bootstrap
estimator for a single “specimen bootstrap” replicate per sampling treatment when
b = 100, 500, or 1000 “expansion bootstrap” replicates were included in the calculation.

Sampling treatment b = 100 b = 500 b = 1000

−67% 54 53 53

−33% 81 80 80

0% 147 146 144

+33% 155 156 156

+67% 228 224 224

Note: All trials were conducted under the “tows changed” sampling method (i.e., the number of tows sampled was
changed).
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Table A3. Types of data used in the stock assessments for each stock.

Species Data type Years

Dusky rockfish Fishery catch 1977–2020

Fishery age composition 2000–2006, 2008–2018 (biennial)

Fishery length composition 1990–1999, 2007–2019 (biennial)

NMFS Bottom Trawl Survey Biomass Index 1984–1999 (triennial), 2001–2019 (biennial)

NMFS Bottom Trawl Survey age composition 1984–1999 (triennial), 2001–2019 (biennial)

Pacific ocean perch Fishery catch 1961–2020

Fishery age composition 1990, 1998–2002, 2004–2006, 2008–2018 (biennial)

Fishery length composition 1963–1977, 1991–1997

NMFS Bottom Trawl Survey Biomass Index 1990–1999 (triennial), 2001–2019 (biennial)

NMFS Bottom Trawl Survey age composition 1990–1999 (triennial), 2003–2019 (biennial)

Walleye pollock Fishery catch 1970–2020

Fishery age composition 1975–2019

Shelikof Strait Acoustic Survey Biomass Index 2008–2020 (2011 missing)

NMFS Summer Acoustic Survey Biomass Index 2013–2019 (biennial)

NMFS Summer Acoustic Survey age composition 2013–2019 (biennial)

NMFS Summer Acoustic Survey length composition 2015–2019 (biennial)

NMFS Bottom Trawl Survey Biomass Index 1990–1999 (triennial), 2001–2019 (biennial)

NMFS Bottom Trawl Survey age composition 1990–1999 (triennial), 2001–2019 (biennial)

NMFS Bottom Trawl Survey length composition 1999–2019 (biennial, 2003 missing)

ADF&G Trawl Survey Abundance Index 1988–2020

ADF&G age composition 1989–1997 (missing 1991 and 1995), 1998–2018
(biennial)

Note: All compositional data and catch-at-age or number-at-age data inputs are in proportions. NMFS = National Marine Fisheries Service; ADF&G = Alaska Department
of Fish & Game.

Fig. A1. (A) Covariance matrix calculated from proportions-at-age for one year of data (number of age classes = 22; year = 2019)
across specimen bootstrap replicates (m = 200). Age composition replicates used were taken from the dusky rockfish 0% change
sampling rate treatment. (B) Covariance matrix calculated from a random multinomial sample, where the sample size was set
to the mean input sample size across bootstrap replicates of the 0% treatment (NInput = 169) and the probability was set as the
original proportions-at-age for dusky rockfish.
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Table A4. Slope of the log–log relationships between
(i) input sample size and number of otoliths (“otoliths
changed”; eq. 3; third column) and (ii) input sample size
and number of tows sampling otoliths (“tows changed”;
eq. 3; fourth column).

Species Year
Otoliths
changed

Tows
changed

Dusky rockfish 1984 0.632 0.379

1987 0.433 0.941

1990 0.808 1.708

1993 0.542 1.066

1996 0.579 1.066

1999 0.577 1.098

2001 0.630 1.086

2003 0.426 1.211

2005 0.559 0.994

2007 0.599 1.034

2009 0.691 1.091

2011 0.592 1.033

2013 0.604 1.046

2015 0.636 1.054

2017 0.635 1.079

2019 0.538 0.976

Pacific ocean perch 1990 0.590 1.024

1993 0.593 1.022

1996 0.659 1.042

1999 0.627 1.003

2003 0.684 1.030

2005 0.669 0.996

2007 0.721 1.028

2009 0.491 0.915

2011 0.624 1.050

2013 0.696 1.043

2015 0.715 1.024

2017 0.707 1.050

2019 0.541 1.104

Walleye pollock 1990 0.664 1.292

1993 0.529 1.058

1996 0.214 0.696

1999 0.666 1.172

2001 0.468 1.054

2003 0.550 1.123

2005 0.770 1.278

2007 0.461 0.901

2009 0.375 0.859

2011 0.594 1.150

2013 0.660 1.161

2015 0.626 1.106

2017 0.739 1.513

2019 0.664 1.239

Note: Log–log slope is interpreted as the expected percent change in input
sample size per percent change in the number of otoliths processed or
number of tows conducted.

Fig. A2. Input sample sizes calculated using the bootstrap
estimator related to the effective sample size as determined
through assessment model runs, averaged across bootstrap
replicates for each sampling rate treatment and years.
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Table A5. P-value results from Levene’s test for homogeneity of variance ran on sequential pairs of overfishing limit (OFL)
distributions that resulted from stock assessment model runs using data products from each sampling rate treatment (±%) for
each sampling method (“otoliths changed” vs. “tows changed”) and stock.

Method Stock −67% vs. −33% −33% vs. 0% 0% vs. +33% +33% vs. +67%

Otoliths changed Dusky rockfish 0.835 0.094 0.041 0.783

Pacific ocean perch 0.178 0.083 0.001 0.422

Walleye pollock 0.012 0.103 0.533 0.736

Tows changed Dusky rockfish 0.001 0.283 0.001 0.803

Pacific ocean perch 0.001 0.272 0.001 0.141

Walleye pollock 0.114 0.127 0.020 0.001

Table A6. The change in the mean number of otoliths across the number of calendar years since the
start of the survey (nominal sample size/year; NNominal/year) averaged across specimen bootstraps
for each sampling rate treatments (Treatment) and sampling method (Method). Change in cost per
year (US$·year–1) associated with ageing the NNominal/year of each treatment given the per-otolith
cost calculated for each stock.

Method Species Treatment
NNominal change
(otoliths·year–1) Cost change (US$·year–1)

Otoliths changed Dusky rockfish −67% −263 −16 435

−33% −115 −7 193

0% 0 0

+33% 161 10 039

+67% 311 19 446

Pacific ocean perch −67% −646 −26 158

−33% −281 −11 374

0% 0 0

+33% 369 14 958

+67% 739 29 930

Walleye pollock −67% −794 −14 773

−33% −360 −6 697

0% 0 0

+33% 492 9 154

+67% 928 17 272

Tows changed Dusky rockfish −67% −287 −17 965

−33% −141 −8 795

0% 0 0

+33% 139 8 680

+67% 285 17 813

Pacific ocean perch −67% −685 −27 728

−33% −337 −13 658

0% 0 0

+33% 330 13 357

+67% 678 27 454

Walleye pollock −67% −861 −16 023

−33% −428 −7 970

0% 0 0

+33% 423 7 874

+67% 855 15 917
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